Continuous EEG monitoring of the premature infant in the NICU

Tom Stiris
Oslo University Hospital, NICU

CIP, Paris 2011
A method that at a very early stage diagnose those babies which would benefit from early interventions:
A method that at a very early stage diagnose those babies which would benefit from early interventions:

- important tool in clinical practice.
- possible to introduce a better strategy in the follow up approach of the premature infant.
Why early EEG-monitoring???
Why early EEG-monitoring???

Brain injury at an early stage,
Why early EEG-monitoring???

Brain injury at an early stage,
Brain maturation process

01.03.2011
Why early EEG-monitoring???

- Brain injury at an early stage,
- Brain maturation process
- Guide us in clinical practice

01.03.2011
Why early EEG-monitoring???

- Brain injury at an early stage,
- Brain maturation process
- Guide us in clinical practice
- Intervention therapy

01.03.2011
What do we know about EEG in the premature
EEG in the premature infant

Reflects third trimester development

Changes with behavioral state cycles

Dependent on advancing postconceptional age

01.03.2011
<table>
<thead>
<tr>
<th>EEG</th>
<th>Frequencies</th>
<th>Amplitude</th>
</tr>
</thead>
</table>

01.03.2011
EEG -frequencies

<table>
<thead>
<tr>
<th>Name</th>
<th>Frequency [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta</td>
<td>0.1-4</td>
</tr>
<tr>
<td>theta</td>
<td>4-7</td>
</tr>
<tr>
<td>alpha</td>
<td>8-13</td>
</tr>
<tr>
<td>beta</td>
<td>13-15</td>
</tr>
<tr>
<td>gamma</td>
<td>30-90</td>
</tr>
</tbody>
</table>

01.03.2011
Background EEG according to amplitude and pattern

A. Continuous pattern

B. Discontinuous pattern

C. Undifferentiated pattern.

01.03.2011

Comparison of the continuities for the three groups of preterm infants.

(A) Continuous patterns;

(B) Discontinuous patterns.
the percentage of continuous patterns increased with increasing PCA

the percentage of discontinuous patterns increased with increasing PCA
Relationship between amplitude and PCA

Okumora A. et al; Pediatr Neurol (23); 2005
Most striking EEG features

Temporal and occipital delta waves:
1. most frequent
2. more numerous than the frontal

Delta waves synchronization was also an important criterion, which can be explained by the subcortical thalamic drive and/or by progressing synaptogenesis in the corpus callosum.

01.03.2011
Amplitude-integrated electroencephalography (aEEG)

- Continuous monitoring
- Information on background activity
- Detect significant brain dysfunction
- Seizure detection
Suggested classification aEEG patterns in preterm and term infants

Continuous (C): minimum (5-10 µV and maximum 10–25(50)µV

Discontinuous (DC): minimum amplitude variable, but below 5 µV, and maximum amplitude above 10 µV

Burst suppression (BS): discontinuous background with minimum amplitude without variability at 0–1(–2)µV,

Bursts with amplitude >25 µV

Low voltage (LV): continuous background pattern of very low voltage (around or below 5 µV)

Inactive, flat (FT): mainly inactive (isoelectric tracing) background below 5 µV
Sleep-wake cycling (SWC)

- No SWC
- Imminent/immature SWC
- Developed SWC

Hellstr m-Westas et al, Neuroreviews, 2006
Seizures

- abrupt rise in the minimum amplitude
- simultaneous rise in the maximum amplitude followed by a short period of decreased amplitude.
- Single seizure: a solitary seizure
- Repetitive seizures: single seizures appearing more frequently than at 30-min intervals
- Status epilepticus: continuously ongoing seizure activity >30 min

Hellström-Westas et al, Neureviews, 2006
Cyclical rhythmical variations
Left: GA 29 weeks; IVH grade IV: Discontinuous low-voltage pattern with repetitive seizures (arrows) confirmed by clinical epileptic activity.

Right: GA 29: without PIVH: Predominantly continuous pattern (encircled) with intermittent episodes of discontinuous high-voltage pattern and cyclical sinusoidal variations describing sleep-wake cycles
aEEG- possible limitations?

- Short lasting or localized seizures may be missed
- Does not differentiate the wave type
- Does not differentiate between the brain hemispheres
- Only records activity from a limited area in the brain

01.03.2011
Continuous multi-channel EEG recording
Montage suggestion

10 self-adhesive electrodes where:

- 8 active electrodes placed symmetrically over both hemispheres.
- Open space over the fontanel for ultrasound and echo Doppler measurements

01.03.2011
EEG-”cap”

01.03.2011
EEG-examples – GA 28 weeks

EEG after 71 hours of recording

Electrode impedance

01.03.2011
Artifacts

01.03.2011

Oscillation 10 Hz GA 27 weeks
Artifacts

01.03.2011

Muscle activity (GA 29 weeks)
Artifacts

01.03.2011

Suction
Artifacts
Automated analyses

Future

01.03.2011
Automated analysis of long-term continuous EEG monitoring (LTM) in premature infants

EVA M. SCHUMACHER, ASBJORN S. WESTVIK, P L G. LARSSON, ROLF LINDEMANN, JOSTEIN WESTVIK, AND TOM A. STIRIS
Oslo University Hospital, Norway
Method

• Absolute Band Power (ABP) was used to measure brain activity and it is defined as the integral of all the power values within its frequency range and expressed in µV^2

• The ABP values of each second in all the bands were exported to the SAS System (SAS Institute Inc, Cary, NC, USA)

• Total ABP (tABP) was calculated for each band resulting in 4 tABPs (δ-tABP, Φ-tABP, α-tABP and β-tABP)
Method

The recordings were edited in two different ways to remove artifacts

1. **Visual editing**

 Unreadable EEG and EEG with impedances above 40 kΩ in any channel was discarded

2. **Automated editing**

 Mathematical removal of respectively 5, 10, 15 or 20% of the highest tABP values
Results
The recorded δ–tABP in one infant

EAPS Copenhagen 2010
Conclusion:

This demonstrates that visual editing of LTM may be substituted by mathematical trimming of the EEG data.

This could be implemented in automated EEG analyses in preterm infants.
IntABP of A: the δ-band, B: the Φ-band, C: the α-band and D: the β-band during the first three days of life.

There is a significant increase of tABP from d1 to d3 (P<0.001) and a significant difference between the two groups for all the bands (P<0.001). There is no significant difference in the increase of tABP from d1 to d3 within the groups (Schumacher E, Stiris T et al, Pediatr res. 2011)
Burst coverage (range / interquartile range) as detected in 11 infants by 3 assessors and 2 different algorithms
Conclusion:
Revised algorithm results in detections comparable to human eye.
EEG at 6 weeks of life in very premature neonates

Conclusion: At 6 weeks of life, EEG may be helpful in refining neurological risk in very premature neonates.

Significance: EEGs recorded at 6 weeks of age may be a valuable predictive tool in addition to early EEG and cranial ultrasound.
tABP on day 1-3 and outcome at 2yrs of age

01.03.2011

Schumacher E, Stiris T; prelim data
Thank you
aEEG

Moderately abnormal: >10 uV and <5 uV.

Severely abnormal: <10 uV and <5 uV

Seizures: sudden increase in voltage accompanied by narrowing of the band followed by a brief period of suppression.

01.03.2011