

Predisposing factors to urinary tract infections in children

G.S. Reusz I.st department of Pediatrics, Semmelweis Univeristy, Budapest

UTI: Predisposing factors

- Virulent bacteria
- Sensitive host

- For a successful treatment one should consider all (known) predisposing factors, in order to
 - Eliminate the infection
 - Prevent recurrences

– Prevent late complications

Acute pyelonephritis US (1)

Enlarged kidneys, Blurred structure, abscess?

Acute pyelonephritis CT (2)

Enlarged kidney, Multiple abscesses

Prune-belly syndrome

Meningomyelocele

3/30/20

Intrarenal reflux

^{3/30/2015} Posterior urethral valve

Kidney fibrosis a: small hyperechogenic kidney b: normal kidney

3/3

b

UTI: Predisposing factors

Virulent bacteria

Sensitive host

Bacteria (1)

- Definitions
 - bacteriuria
 - significant
 bacteriuria
 - cystitis
 - pyelonephritis
 - unspecified
 - asymptomatic bacteriuria

- Sampling techniques
 - collecting bag
 - midstream urine
 - catheter urine
 - suprapubic
 puncture

Bacteria (2)

ERRORS

Inappropriate sampling – misleading bacteriology – misleading sediment

 Bacteriology should be considered together with urine sediment and the clinical syndrome

 Controls should not rely solely on bacteriology, use urine sediment instead routinely

- Virulence=factors that enable bacteria to invade the urinary tract
- Surface antigens
 - O: lipopolysacharides with endotoxin properties. Induces fever, local inflammation
 - K: (capsular) antigen, prevents phagocytosis
- "P" fimbriae: bind to glycolipid receptors of the P blood group family
- A number of additional factors not routinely checked

- Pyelonephritis: 3-4 (known) virulence factors
- Cystitis: 0-2 factors
- CAVE: OBSTURCTION !! MALFORMATION !!

1	
	30
19	
1	

Acute pyelonephritis (APN)

Severe local and systemic inflammation, may become life-threatening. 30% bacteremia in adults. Progression to chronic infection and renal failure

APN strains

Fimbriae, Toxins Capsules, iron binding molecules Inhibitors of innate immunity

Asymptomatic bacteriuria (ABU)

a model of commensalism in the bladder

ABU strains

Attenuated pathogens Smaller genome size virulence genes contain deletions or mutations

Ragnarsdóttir B; Pediatr Nephrol (2012) 27:2017–2029

Bacterial spectrum at the 1st Dept. of Pediatrics

N=7850	(%)
• E. coli	49
 Enterococcus faecalis 	13
 Proteus indol neg. 	10
 Klebsiella 	7
 Pseudomonas spp 	7
 Enterobacter spp 	6
 Proteus indol pos 	3
 Staphylococcus 	3
• Other	2

UTI: Predisposing factors

• Virulent bacterium

Sensitive host

Sensitive host

Age related factors

- Anatomy (short urethra, phymosis and adhesio cellularis preputii et labia minora, diaper, obesity)
- colonization
- Immunological susceptibility
 - -Mucosal barrier
 - »Inherited/acquired (innate immunity: IL8,
 - TLR) (Karoly E et al: Pediatr Res 2006; 61:371–374)
 - –Age related immunresponse »Inherited/acquired

Innate rather than adaptive immunity is essential for bacterial clearance during UTIs

T, B cell or RAG mutant mice are fully resistant to UTI.

TIr4-/- mice become asymptomatic carriers with low innate immune responses.

mCxcr2^{-/-} (IL-8 receptor deficient) mice develop acute, lethal septic pyelonephritis and surviving mice develop chronic renal damage.

Sensitive host

- Anatomical malformations
 - obstruction
 - -VUR
 - meningomyelokele
 - -prune-belly syndrome
 - Stone disease, etc

VUR (1) anatomy of the ureteral orifice

A

Mucosa barrier

Age-related incidence of UTI

Sequence of kindney damage 1.

UTI Parenchymal damage Fibrosis Loss of function Renal insufficiency

- Anatomic malformations
 - Subvesical Obstruction
 - VUR
 - UV stenosis
 - PU stenosis
 - Meningomyelocele
 - Prune-Belly-Syndrome
- Immun deficiency
- Virulent bacteria

Ichikawa I et al: Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. *Kidney International* (2002) 61, 889–898;

•3/30/201

Sequence of kindney damage 2.

- Hypoplastic kidneys, low nephron number
- UTI
 - Subvesical Obstruction
 - VUR
 - UV stenosis
 - PU stenosis
 - Meningomyelocele
 - Prune-Belly-Syndrome
 - Immun deficiency
 - Virulent bacteria
- Vitious cercle

Causes and course of UTI

Summary

- UTI is a frequent condition in children
- There are a number of predisposing factors to UTI, that are not related to pathological anatomy
- Primary renal hypoplasia with reduced nephron number accompanying the most severe anatomical malformations is a major factor leading to deterioration of kidney function

•2015.03.30.

Reflux nephropathy

